Los encantos de esta ciencia sublime, las matemáticas, sólo se le revelan a aquellos que tienen el valor de profundizar en ella. Carl Friedrich Gauss
Mostrando entradas con la etiqueta Paenza. Mostrar todas las entradas
Mostrando entradas con la etiqueta Paenza. Mostrar todas las entradas

martes, 12 de agosto de 2014

ADRIÁN PAENZA, EL MEJOR DIVULGADOR MATEMÁTICO DEL MUNDO

La Unión Matemática Internacional anunció el Premio Leelavati. Se trata del máximo reconocimiento internacional a la tarea de divulgación matemática. Es una distinción que se entrega cada cuatro años y que está reservada a quienes hacen aportes significativos para mejorar la percepción pública de la matemática como una disciplina intelectual que juega un rol crucial en diversos campos de la actividad humana.
El nombre Leelavati se refiere a un libro creado por Bhaskara II, un matemático indio del siglo XII, quien desarrolló un relato con una serie de problemas de aritmética y álgebra para su hija llamada Leelavati. Según la leyenda, Bhaskara II escribió ese libro para entretener y consolar a su hija, decepcionada por la cancelación de su boda. La obra es considerada la mayor contribución a la enseñanza de la matemática en la India medieval.
El Premio Leelavati no es un reconocimiento a la investigación en matemática. Al otorgarlo, el Comité Ejecutivo de la Unión Matemática Internacional tiene en cuenta la contribución de los nominados a la visibilidad de la matemática a través de sus trabajos en diversos canales de comunicación como libros, radio, televisión, películas, páginas de internet, conferencias y muestras en museos.
Esta distinción se instituyó en el año 2010, y el primer ganador fue Simon Singh; físico, escritor, periodista y productor televisivo británico de origen indio, quien se especializó en la divulgación de contenidos matemáticos y científicos.
Adrián Paenza será entonces el segundo ganador del Premio Leelavati como reconocimiento a su actividad en la comunicación de la ciencia en general y de la matemática en particular.
La entrega oficial será el día 21 de agosto en Seúl, Corea del Sur; en el marco del Congreso de la Unión Matemática Internacional. En esa oportunidad Paenza ofrecerá una conferencia para los matemáticos que asistan al encuentro.

¡Merecido reconocimiento, Profesor Paenza! ¡Orgullo de toda Argentina! ¡Desde este humilde blog vayan mis felicitaciones!
 
 

viernes, 11 de julio de 2014

LAS FIGURITAS DEL MUNDIAL

EL Dr. ADRIÁN PAENZA no responde acerca de cuántas figuritas hay que comprar y cuánto dinero cuesta para completar el álbum.

El 17 de junio de este año, cinco días después de que Brasil inaugurara el Mundial, recibí un mail de mi querido amigo y ex alumno Carlos Sarraute. Creo que vale la pena que lo lea con atención: “Te cuento un problema que tiene desvelados a los padres de niños en edad escolar en estos días: ¿cuántas figuritas hay que comprar para completar el álbum del Mundial? ¿Y cuánta plata termina saliendo? Las figuritas se venden en paquetes de 5 pero, simplificando, el problema se podría plantear así: suponiendo que las figuritas se compran de a una, que vienen distribuidas al azar (uniformemente), y que el álbum tiene lugar para 600 figuritas (en realidad son 639)... si uno no intercambia figuritas, ¿cuál es la cantidad de figuritas que hay que comprar para llenar el álbum?”.
Acá paro. Desde niño siempre tuve una pasión particular por el tema de las figuritas. En alguna parte tengo todavía los álbumes que fui coleccionando pero, curiosamente, ¡nunca pude completar ninguno! Más allá de que me digan que ahora eso no sucede, que las figuritas se imprimen todas por igual, que las planchas reproducen las caras de todos los jugadores uniformemente, que no hay preferencias, que no hay jugadores “distinguidos” (para que salgan más o salgan menos), me cuesta trabajo imaginarme que sea cierto... pero, como no conozco el tema, quiero hacer de cuenta que eso no sucede más.
Lo que sí puedo garantizar es que en la época en la que yo era niño (sí, ya sé, hace tanto tiempo que la gente tenía que “saltar” por la calle porque la Tierra aún estaba caliente...), decía, en esa época, seguro que había figuritas difíciles. Recuerdo dos casos en particular: uno fue el de José Manuel Ramos Delgado, “zaguero” derecho de Lanús (y de River y del Santos de Brasil, compañero de Pelé en algún momento, y del seleccionado argentino), y Julio San Lorenzo (ex jugador de Nueva Chicago, Racing y que también jugó en Banfield). Sus figuritas fueron imposibles. No sólo eso: creo que una vez vi una de Ramos Delgado pero de San Lorenzo no... nunca. Y es por eso que ese álbum nunca lo pude terminar. Y como ese ejemplo, estoy seguro de que cada uno que se haya acercado al fútbol de alguna manera tiene su propia anécdota para contar. Tanto debe ser así que, si no, el dicho “figurita difícil” no tendría sentido de existir.
Por otro lado, no sé cuán popular se hizo el caso de un jugador de Costa Rica que está participando de este Mundial, Joel Campbell, quien se compró 100 paquetes (de cinco figuritas cada uno) para poder “tenerse a sí mismo”, pero ¡no tuvo suerte! Si bien en total son 639 jugadores, teniendo 500 de una sola vez Campbell pretendió aumentar muchísimo su probabilidad de conseguir la propia, pero no lo logró.
Ahora, quiero volver al problema. Antes de avanzar con la cuenta, me interesa hacerle a usted una pregunta: si uno se decidiera a no cambiar figuritas con sus amigos, no recurrir a una plaza un sábado por la tarde o domingo por la mañana o a Facebook o fijarse en las páginas de Internet para encontrar personas que como usted están buscando conseguirlas todas... sólo imagine que usted tiene el dinero suficiente como para comprar un número grande de paquetes: ¿cuántas figuritas –o paquetes– estima que tendría que conseguir para poder llenar el álbum?
Es importante el detalle de no intercambiar figuritas con nadie, porque mi objetivo es “cuantificar en dinero” lo que hay que invertir para tener una esperanza razonable de completar el álbum.
Antes de avanzar con la cuenta, necesito que usted y yo establezcamos un acuerdo: yo quiero hacerle acá un par de preguntas. Como usted no está conmigo para contestarlas, lo voy a hacer como si estuviéramos juntos, pero le pido que no avance en la lectura si no está satisfecho con las respuestas que usted “me dio”. Acá voy.
En principio, si fuéramos a tirar una moneda al aire, ¿cuántas veces cree usted que deberíamos arrojarla para tener una buena expectativa de que salga cara? Naturalmente, no hay garantías de que salga cara aun tirándola cien veces, porque podría darse una secuencia de cien “cecas” consecutivas, pero la pregunta apunta hacia lo que podríamos “aspirar” o “esperar” que suceda. La/lo dejo pensando por un momento.
Sigo yo: creo que escuché que me decía que “con dos tiros” deberíamos estar contentos, porque como hay dos “lados posibles” (cara y ceca), y la probabilidad es 1/2 en cada caso, entonces, si la arrojamos al aire dos veces, entonces podríamos imaginar que una de las veces salió cara.
De la misma forma, si tuviéramos un dado, la probabilidad de que salga –por ejemplo– un cuatro, es 1/6. En realidad, la probabilidad de que salga cualquier número es 1/6, no importa cuál sea. Entonces, vuelvo a hacerle la misma pregunta, pero referida a un dado: ¿cuántas veces habrá que tirar el dado para sentirnos más o menos cómodos de que tenemos una buena posibilidad de que el número que hemos elegido “salga”?
¿Cómo dijo? No escuché bien... ah, sí, tiene razón: seis veces. Uno tiene “derecho” a esperar que si tira un dado seis veces, entonces, en una de esas veces el lado del dado que aparece es un cuatro.
Una observación más que voy a necesitar un poquito más adelante. Como usted advierte, cuando la probabilidad (en el caso de la moneda) era de 1/2, me alcanza con tirar dos veces la moneda al aire, y no sé si usted prestó atención pero se puede hacer esta cuenta:
1/(1/2) = 2
¿Por qué hice esa cuenta? Para mostrarle que si la probabilidad es 1/2, la cantidad de veces que tengo que tirar la moneda es uno dividido por esa probabilidad. En el caso del dado, la probabilidad de que salga un cuatro es 1/6. Usted estuvo de acuerdo conmigo que había que tirar el dado seis veces para estar confiados en que nos va a salir un cuatro. Ahora, le sugiero que piense conmigo: si uno hace uno dividido por la probabilidad de que salga un cuatro, resulta ser:
1/(1/6) = 6.
Es decir, en ambos casos sucede algo curioso: cuando uno quiere saber cuántas veces tiene que tirar la moneda o el dado, lo que tiene que hacer es la siguiente cuenta: uno dividido por la probabilidad de que suceda lo que quiero. Recuerde este hecho porque lo voy a usar casi en forma inmediata.
Quiero ahora empezar con el caso de las figuritas. Para hacer las cuentas más fáciles voy a suponer que en lugar de venderse en paquetes de a cinco se venden por unidad, y en lugar de valer cinco pesos por paquete vale un peso cada figurita. Está claro que estoy modificando la realidad, pero a los efectos de lo que quiero hacer eso resulta irrelevante.
Sigo. En principio, supongamos que en lugar de haber 639 figuritas en el álbum hubiera nada más que tres. Estamos por empezar a comprar figuritas y queremos estimar cuánto dinero nos hará falta invertir para completar un álbum de tres figuritas. Si compro la primera figurita, seguro que “no la tengo”, por lo que la probabilidad de que la pegue en el álbum es uno o, lo que es lo mismo, un ciento por ciento. Es decir, un peso tendré que invertir seguro para la primera figurita.
Ahora bien. Una vez que pegué la primera figurita, me faltan dos para completar el álbum. Si yo comprara una figurita solamente, ¿cuál es la probabilidad que sea una de las dos que me falta? La probabilidad es 2/3, porque de las tres posibles, dos me vienen bien. Es decir en dos casos sobre tres posibles obtendría una figurita que me sirve y es por eso que la probabilidad es 2/3. Ahora quiero usar lo que le pedí que recordara: para saber cuántas veces tenía que tirar la moneda al aire o arrojar el dado, lo que había que hacer es uno dividido la probabilidad. En el caso de las figuritas, como la probabilidad de que salga una de las dos que quiero es 2/3, entonces el número de figuritas que tengo que comprar se calcula como:
1/(2/3) = 3/2 = 1,5.
O sea, hasta acá tuve que comprar una figurita (cuando no tenía ninguna en el álbum), ahora tengo que comprar 1,5 más. Para terminar, me falta una figurita (porque se supone que ya pegué dos). ¿Cuál es la probabilidad de que me salga si compro un paquete? Esa probabilidad ahora es 1/3, porque sobre las tres figuritas que pueden aparecer, me sirve solamente una. Como antes, ¿cuántas figuritas (o paquetes) tengo que comprar? Pues bien, tengo que dividir:
1/(1/3) = 3.
Es decir, que ahora tengo que comprar tres figuritas más. Juntando todo, tuve que comprar:
1 + 1,5 + 3 = 5,5 figuritas (si esto fuera posible, porque uno no puede comprar media figurita).
Ahora, con la misma idea, volvamos a la realidad de las 639 figuritas. La cuenta que hay que hacer para saber cuántas figuritas tengo que comprar para llenar el álbum se hace de la siguiente forma:
639/639 + 639/638 + 639/637 + .... 639/3 + 639/2 + 639/1 = 4.497,21 figuritas.
Este dato es muy interesante, porque entonces uno deduce que si cada figurita cuesta un peso, el dinero que hay que invertir –sin intercambiar figuritas con nadie– es de casi $4500 para llenar el álbum. ¿Sabrán los chicos lo que cuesta? Mejor aún: ¿sabía usted qué dinero anda en juego cuando uno habla de algo tan inofensivo como un álbum de figuritas?
No sé cuánto le importa a usted, ni cuán significativo es para los niños, pero de lo que sí estoy seguro es de que la compañía que los imprime hizo bien los deberes y toooooodos los cálculos, sin ninguna duda.

De: http://www.pagina12.com.ar/diario/contratapa/13-250187-2014-07-06.html

domingo, 13 de abril de 2014

UNO DEL DR. ADRIÁN PAENZA

PARA LEER Y REFLEXIONAR...
Más allá del problema que propone el Dr. Paenza en esta oportunidad, que como siempre es atrapante, la reflexión que hace previo a plantear la situación vale la pena ser leída.
 


domingo, 22 de diciembre de 2013

EL MUNDIAL DE FÚTBOL Y LA MATEMÁTICA

Por Adrián Paenza en la contratapa de Página/12 
Ya está el sorteo. Ya se conocen los rivales. Argentina jugará en la primera fase contra Irán, Bosnia-Herzegovina y Nigeria. Se supone que el grupo es “accesible” aunque, por supuesto, después hay que jugar los partidos. Es muy poco probable que el seleccionado no se clasifique para la segunda ronda, pero el otro día un amigo me hizo una pregunta que me lleva a escribir este artículo y trasladarle la pregunta a usted. De paso, permite entrenar la capacidad para pensar. Acá va.
Si cuando termina la serie inicial se sabe que Nigeria ganó “exactamente” dos partidos, Bosnia empató “exactamente” dos partidos e Irán perdió “exactamente” dos partidos, ¿puede Argentina salir campeona del grupo sin compañía? Y si pudiera, ¿a qué países les tuvo que haber ganado?
No todo el mundo tiene por qué saber cómo se compite en la fase inicial de un campeonato del mundo, pero cada uno de los cuatro países de cada grupo enfrenta a los otros tres. Cada partido ganado otorga tres puntos, por partido empatado la recompensa es un punto y nada por partido perdido.
¿Podría darse el caso entonces de que Argentina ganara el cuadrangular en soledad? Y en ese caso, ¿cuáles y a quiénes tuvo que haberles ganado?
Ahora le toca a usted.

Respuesta

Uno tiene la tentación de decir que bastaría con que Argentina gane los tres partidos y listo. Eso implicaría –obviamente– que Argentina gane el grupo en soledad. Pero eso violaría las condiciones iniciales del problema. Piense conmigo: como Nigeria tiene que ganar dos partidos, pero debería perder con Argentina, entonces debería ganarle a Irán y a Bosnia. Y Argentina, al haber ganado sus tres partidos, también tendría que haberle ganado a Bosnia. Pero si ése fuera el caso, Bosnia no podría haber empatado dos partidos. O sea, la conclusión es que si uno quiere que se verifiquen las condiciones pedidas, Argentina no puede ganar los tres partidos.
Ahora analicemos si Argentina puede perder algún partido y que se cumplan las condiciones pedidas. Para que Argentina gane el grupo en forma absoluta (pero respetando las restricciones escritas más arriba), tiene que haber ganado por lo menos dos partidos. Si no, no alcanzaría a igualar a Nigeria, que sabemos que ganó dos. Pero por otro lado, si perdiera alguno, entonces a lo mejor que podría aspirar es a empatar el primer puesto con Nigeria (suponiendo que ganara los otros dos).
O sea, de todos estos datos se deduce que Argentina,
a) No puede ganar los tres partidos.
b) No puede perder ningún partido.
La única alternativa que queda es que Argentina gane dos y empate uno. De acuerdo, pero, ¿a quiénes les tiene que ganar y con quién debería empatar? ¿No le dan ganas de pensar a usted?
Sigo yo. La clave está –creo– en el partido Argentina-Nigeria. Por un lado, sabemos que los dos países ganaron por lo menos dos partidos. Si empataran en este partido entre ambos, terminarían ganando el grupo los dos, y eso no es lo que queremos, porque Argentina tiene que ganar el grupo en soledad. Y esto es importante, porque se deduce que entre ellos no pueden empatar.
Y ni hablar de que Nigeria le gane a Argentina, porque entonces Argentina tampoco podría salir primera absoluta del grupo. Entonces, todas estas reflexiones sirven para concluir que Argentina tiene que ganar el partido contra Nigeria.
A partir de este dato, analicemos el resto. Por ahora, sabemos lo siguiente:
1) Argentina le ganó a Nigeria, y tuvo que haber ganado o bien a Irán o bien a Bosnia, pero no a los dos (ya que no puede ganar los tres partidos).
2) Nigeria perdió con Argentina, pero tuvo que haberle ganado a Irán y a Bosnia.
3) Como se sabe que Bosnia empató exactamente dos partidos, al haber perdido con Nigeria, tuvo que haber empatado los otros dos: con Irán, sí, pero también con Argentina. Y eso termina respondiendo lo que no sabíamos en el punto (1).
4) Por último, Irán entonces empató con Bosnia, pero como perdió dos partidos exactamente, tuvieron que ser contra Argentina y Nigeria.
Ahora un cuadro con un resumen de lo que tuvo que haber pasado
ArgentinaBosniaIránNigeria
ArgentinaX133
Bosnia1X10
Irán01X0
Nigeria033X
Esto concluye el análisis entonces. La respuesta es que sí, que se puede: Argentina puede ganar invicta el grupo y ganarlo en soledad aunque haya un equipo (Nigeria) que gane dos partidos, otro país (Bosnia) que empate dos de sus partidos y el último (Irán) que pierda exactamente dos.
Ah, y esto es hacer matemática también.

martes, 19 de noviembre de 2013

MATEMAGIA

Ya podemos disfrutar de un nuevo libro de Adrián Paenza. Este ejemplar, publicado por Editorial Sudamericana, cuenta con el inconfundible toque del autor, y, como siempre,  se puede descargar gratuitamente desde la página del Departamento de Matemática de la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires http://cms.dm.uba.ar/material/paenza/libro8/ 

Un muy buen libro como los que Paenza nos tiene acostumbrados. Hay un festín de problemas ingeniosos y sus respectivas soluciones 

CONTRATAPA


Adrián Paenza ha demostrado que la matemática sirve para mucho más que aburrirnos en el colegio. Este nuevo libro es un mar de ideas, juegos, desafíos, estrategias, ingenio y, sobre todo, magia. ¿Qué método debería usar una encuesta para ser infalible? ¿Puede la matemática resolver un caso judicial? ¿Cómo se hace para ganar una subasta por Internet? En una reunión con amigos, ¿cómo se puede demostrar que siempre dos personas tienen la misma cantidad de amigos presentes? ¿De qué secreto nos provee la matemática para ganar a la batalla naval? ¿Cuál es la mejor forma de organizar parejas para ir a un baile? Si tiramos una moneda diez veces seguidas, ¿saldrá más veces cara o ceca? ¿Cómo descubrir la combinación de un candado? Si una escuela tiene cuatro campanas, ¿cuántos órdenes posibles hay para que suenen? Si un hombre tiene dos hijos, uno de ellos es varón y nació un martes, ¿qué probabilidad hay de que los dos sean varones? La matemática recreativa se puede aplicar para solucionar problemas cotidianos, despertar el pensamiento lateral, agilizar la mente, divertirnos y aprender.

Algo del capítulo : LA BATALLA NAVAL MEZCLADA CON PASTILLAS, ARAÑAS Y MOSCAS
LA BATALLA NAVAL

En mi paso como alumno de colegios primarios y secundarios, la variedad de juegos que estaban a nuestra disposición era muy limitada. Es decir, yo creo que en ese momento no me daba cuenta, pero ahora, viendo la cantidad de plataformas posibles, advierto que teníamos posibilidades muy restringidas. Eso sí, éramos felices igual.
De todos los entretenimientos a los que podíamos recurrir, que no fuera durante un recreo sino mientras estábamos en los bancos (hora libre, condiciones del tiempo que hacían imposible salir al patio, etc.), hubo uno que nos tenía muy ocupados: ‘la batalla naval’.
No sé si aún se sigue jugando (dudo que sea con la misma intensidad), pero para los que nunca escucharon hablar de ella hago una breve descripción: intervienen dos participantes. En una hoja cuadriculada, cada uno dibuja un cuadrado de 10 10.
Cada jugador tiene un número de ‘barcos’ (formados por ‘cuadraditos’) que distribuye en ese ‘tablero’ de 10 10. Los barcos consisten en rectángulos de 1 125, 2 1, 3 1, 4 1 y 5 1 (o también de 1 2, 1 3, 1 4 y 1 5). De esta forma, los barcos pueden ser dispuestos en forma horizontal o vertical. Además, puede que haya varios de la misma longitud, pero eso forma parte de las convenciones particulares del acuerdo con el que lleguen los dos jugadores antes de competir.
El cuadrado dibujado en la hoja cuadriculada está marcado como un mapa. Es decir, en la parte horizontal, cada columna está etiquetada por una letra. Estas letras van desde la A hasta la J, mientras que cada fi la, lleva un número que van desde el número uno hasta el diez. 
Una vez que cada uno distribuyó sus barcos, el juego empieza cuando uno de los participantes trata de identifi car alguno de los cuadraditos del rival, imaginando que allí hay un barco del oponente. Si en esa posición, digamos E4 (ver figura 1), no hay ubicado ningún barco rival, entonces éste contesta diciendo: ‘agua’. Eso indica que en esa posición no hay más que agua. En cambio, en el lugar E5 hay parte de un barquito. Por lo tanto, el jugador contesta: ‘tocado’ (si es que el disparo del rival coincide con un lugar ocupado por uno de los barcos, pero no es todo el barco) y ‘hundido’, si con ese ‘tiro’ el barco ha sido tocado en todos sus cuadraditos, como se ve en la fi gura 1 en el lugar B3.


¿Por qué estaré contando todo esto? Porque me interesa mostrar cómo la matemática interviene también en este tipo de juegos. ¿De qué manera? Fíjese si está en condiciones de pensar (y luego contestar) este problema.
Suponga que usted tiene nada más que un solo barco de 1 x 4 o de 4 x 1 y lo depositó en alguna parte del cuadrado. ¿Cuál es el mínimo número de tiros que una persona tiene que arriesgar
para poder garantizar que tocó a ese barco? Es decir, supongamos que estamos jugando usted y yo. Usted colocó su barco de 1 x 4 (o de 4 x 1) en el tablero. ¿Cuál es el mínimo número de tiros que yo tengo que hacer para garantizarme que con seguridad toqué su barco?
Naturalmente, poder conocer este resultado, permite elaborar una estrategia de cómo jugar, aunque estoy seguro de que ningún chico ni hoy ni nunca necesitó plantearse esta pregunta. ¿O sí? 

¿La solución?  Corré a buscarla en el libro. 

Para descargar los demás libros de Adrián Paenza: 

lunes, 11 de febrero de 2013

PRIMOS

Un profesor de matemática de la Universidad de Missouri, Estados Unidos, acaba de descubrir el número primo más grande conocido hasta el momento. Tiene más de 17 millones de dígitos. Las aplicaciones de los números primos.


 Por Adrián Paenza

Curtis Cooper es profesor de matemática en una universidad muy pequeña, en el centro de Estados Unidos, la Universidad de Missouri. Cooper se dedica desde hace muchos años a una rama de la matemática que se llama Teoría de Números. Hace dos días, el 5 de febrero del 2013, anunció al mundo que acababa de encontrar el número primo más grande que se conozca hasta hoy. Para tener una idea, este número tiene más de ¡17 millones de dígitos!
Es difícil imaginarse un número tan grande y, por otro lado, ¿para qué? ¿Qué utilidad podría tener para la vida cotidiana descubrir un número de semejante longitud? ¿Qué hay detrás de esa búsqueda? ¿Y qué significa haberlo encontrado? ¿Es que acaso mejora la calidad de vida de la ciudadanía? ¿Nos hace mejores? En definitiva... ¿para qué sirve?
Quiero ofrecer una sola –potencial– respuesta: los números primos están asociados a su vida cotidiana mucho más allá de lo que usted advierte. El único problema es que son totalmente transparentes para un ciudadano común, y obviamente me incluyo. Pero cada vez que usted retira dinero de un cajero automático, cada vez que hace cualquier transacción por Internet, cada vez que usted abre su correo electrónico y luego de poner su identidad agrega su contraseña o password, cada vez que usted usa su tarjeta de crédito (o débito) por Internet, está usando algunas propiedades de los números primos. La criptografía moderna se basa esencialmente en los números primos.
Es obvio que ninguna persona necesita saber esto, de la misma forma que una persona que conduce un automóvil no necesita saber ni cómo ni por qué funciona. Sólo le alcanza con saber manejar. Todo aquel que es diabético, sabe que necesita –eventualmente– usar insulina. El diabético la usa y no se cuestiona ni cómo se produce ni por qué funciona. Uno vive en un edificio o en una casa, y no necesita ser ni ingeniero ni arquitecto ni albañil. De hecho, usted está leyendo un diario y no necesita saber cuáles fueron los pasos que mediaron entre que yo estoy escribiendo estas líneas y usted que las está leyendo. La vida fluye de esa forma para todos en todas las actividades. La única diferencia es que cuando se produce algún acontecimiento en el mundo de la matemática, es como si el mundo entero cuestionara: ¿y ESO para qué sirve?
Como recordatorio: un número primo es un número entero positivo [1] que solamente se puede dividir exactamente por uno y por él mismo. Por ejemplo, el número dos es primo, el tres también, el cinco, el siete, el once son todos números primos. El seis no, porque no sólo es divisible por sí mismo y por uno, sino que también se puede dividir exactamente por dos y por tres. El 36 tampoco, porque es divisible exactamente por 1, 2, 3, 4, 6, 9, 12, 18 y 36. En resumen, uno podría decir que un número positivo diferente de uno es primo si solamente tiene dos divisores: uno y él mismo.
Dicho esto, algunos datos más, muy importantes:
a) se sabe que hay infinitos números primos. Lo demostró Euclides hace 2400 años;
b) todo número entero positivo (salvo el uno) o bien es primo, o bien se escribe como producto de números primos. Además, esta descomposición es única, salvo el orden. Este hecho es tan relevante que se conoce con el nombre de Teorema Fundamental de la Aritmética.
Y ahora, un dato esencial: es muy fácil multiplicar números. No importa cuán grandes sean, las computadoras multiplican números con una velocidad alucinante. Sin embargo, lo que no pueden hacer las computadoras en un tiempo razonable es descubrir cuáles son los números primos en los que se descompone un número.
Por ejemplo, el número 15 se escribe como tres por cinco (o cinco por tres), y no hay otra forma de descomponerlo. En este caso, es muy fácil. También es fácil descomponer al número 100. Se escribe así: 100 = 2 x 2 x 5 x 5.
Pero si yo le dijera que encuentre los factores primos del número 237.598.000.273.154.151.515.515.027, quizás usted me entienda que es un poco más complicado. Es decir, cuando los números tienen muchos dígitos, encontrar los números primos que lo componen es muy difícil.
La criptografía aprovecha esta dificultad técnica para poder generar claves o contraseñas que son virtualmente inviolables. En realidad, no lo son, si uno tuviera suficiente tiempo (por ejemplo diez mil años), pero a los efectos prácticos, es como si lo fueran. Y acá me quiero permitir una licencia para exagerar: la lucha entre computadoras y el hallazgo de números primos cada vez más grandes se transforma en una suerte de carrera contra reloj: por un lado, las computadoras son cada vez más rápidas y por otro, los números primos que se encuentran son cada vez más de mayor longitud.
Una última palabra respecto de esto: si se pudiera encontrar una forma razonable (en tiempo) para encontrar los factores primos que tiene un número, ¡colapsaría el sistema financiero internacional! Así de sencillo: todas las transacciones conocidas, cuya “inviolabilidad” pareciera estar asegurada, se resquebrajaría y caería como un castillo de naipes.

Una vuelta a Cooper

Para encontrar el número primo anunciado el 5 de febrero, Cooper trabajó junto a 98.980 personas y 574 equipos. Sí, casi 100 mil personas unidas detrás de un proyecto común que se llama GIMPS, por sus siglas en inglés: Great Internet Mersenne Prime Search (La Gran Búsqueda por Internet de Primos de Mersenne). Así como hay gente que se junta en el proyecto SETI buscando señales extraterrestres, hay más de 730 mil procesadores (computadoras) tratando de encontrar números primos (en este caso, se llaman primos de Mersenne por la forma particular que tienen).
El número encontrado por Coo-per es dos multiplicado por sí mismo 57.885.161 veces y luego hay que restarle uno. Es decir: 257.885.161 - 1.
Este número resulta tener 17.425. 170 dígitos. Si uno quisiera escribirlo, necesitaría casi 84 kilómetros para poder hacerlo.
Claramente no fue dinero el móvil ni de Cooper ni del resto de los que participaron, ya que solamente conseguirá algo así como el equivalente de tres mil dólares por su hallazgo. Sin embargo, la primera persona que consiga un número primo con más de 100 millones de dígitos, obtendrá 150 mil dólares y el que llegue al número primo con más de 1000 millones de dígitos recibirá 250 mil dólares.
El primo más grande que se conocía hasta acá fue descubierto en el año 2008 (hace casi cinco años) y tenía 13 millones de dígitos. Cooper ya había encontrado otro, pero que no llegaba a los diez millones de dígitos. Por último: está claro que la vida cotidiana no cambia ni para usted ni para mí con este hallazgo. Sin embargo, hacer ciencia básica, empujar la frontera del conocimiento, tiene siempre el atractivo extra de no saber en qué momento de la evolución del ser humano, algo que parecía intrascendente o irrelevante, puede cambiar la vida de las personas. Y más allá de eso, lo que motoriza todas estas búsquedas es el deseo del hombre de conquistar lo desconocido, descubrir lo ignorado y contestar las preguntas que nadie pudo hasta acá.
[1] A los efectos prácticos, solamente hablo de números positivos, pero en realidad, la definición sobre la primalidad de un número se extiende a todos los números enteros. Eso sí: los números uno y menos uno (+1 y -1) están excluidos de la lista: no son números primos.

De     http://www.pagina12.com.ar/diario/sociedad/3-213400-2013-02-07.html

domingo, 10 de febrero de 2013

SITUACIONES PROBLEMÁTICAS

Un lindo problema para llevar al aula propuesto por el Dr. Paenza en su libro Matemática para todos.

¿Cuántas páginas tiene un diario? 
El diario de la mañana estaba todavía en el piso después del reparto del canillita. Cuando lo fui a buscar, el viento lo hizo volar y se llevó “todas” las hojas menos una que alcancé a pisar. Era una hoja completa (con cuatro páginas). Por curiosidad, sumé los números de las cuatro páginas y me dio 50.
¿Será posible deducir cuántas páginas tenía el diario y, por lo tanto, cuántas hojas se volaron?

jueves, 15 de noviembre de 2012

MATEMÁTICA PARA TODOS

 Ya podemos disfrutar de un nuevo libro de Adrián Paenza. Este ejemplar, publicado por Editorial Sudamericana, cuenta con el inconfundible toque del autor, y, como siempre,  lo puedes descargar gratuitamente


RESEÑA DEL MISMO
 PL4C38 D3 P3N548, D15F8U748 D3 73N38 UN P80BL3M4 NO 835U3L70 3N L4 C4B3Z4, 3XPL0848, 83C08838 C4M1N05 N0 784N5174D05, M1848 L4 V1D4 D35D3 0780 LUG48S, D35CUB818, 1M4G1N48.
L4 M473M471C4 713N3 5U5P3N50, 1N781G4, D1V38510N Y 508P8354 C0M0 L45 BU3N45 H15708145, C0M0 3573 B83V3 73X70 QU3 4H084 U573D L33 CON FLU1D3Z.
L4 M473M471C4... L4 M473M471C4 35 P484 70D05.
0=O 1=I 3=E 4=A 5=S 7=T 8=R

Algo del capítulo ¿PARA QUÉ SIRVE LA MATEMÁTICA?


El juguete más vendido de la historia
¿Alguna vez se preguntó cuál es el “juguete” que más se vendió en la historia de la humanidad? ¿Cuáles podrían ser los candidatos? Pelotas y muñecas deberían estar muy arriba en el podio, ¿no? ¿Qué otros se le ocurren?
No sé si es posible dar una buena respuesta. En todo caso, yo no la tengo, pero sí me sorprendió saber que hay uno del cual se vendieron más de ¡350 millones de copias en los últimos 32 años!
Me estoy refiriendo a un cubo. Sí, a un cubo. No un cubo cualquiera, pero un cubo al fin. Erno Rubik era un escultor y profesor de arquitectura húngaro que enseñaba en la Academia Nacional de Arte Aplicado en Budapest, Hungría. Nació en julio de 1944, hijo de una madre poeta y un padre que era ingeniero aeronáutico. Corría el año 1974, época en la que no había computadoras personales ni programas que permitieran reemplazar a los diseños manuales, y Rubik tenía ante sí uno de los desafíos a los que se enfrentaban los de su época (y la mía): lograr que sus alumnos pudieran “imaginar” objetos en tres dimensiones y ser capaces de visualizar —entre otros movimientos— sus posibles rotaciones y simetrías. Como se sentía impotente y frustrado, diseñó en su casa un cubo formado por pequeños “cubitos”. Cada una de las caras del cubo grande (y por lo tanto, los nueve cuadraditos que la componen) tenía un color asignado: blanco, rojo, azul, naranja, amarillo y verde. La particularidad del diseño es que cada cara externa y el “anillo central” pueden rotar independientemente del resto. Esto lo logró Rubik con un mecanismo interno que le permite pivotear y lograr múltiples configuraciones. Y así nació el Rubik’s Cube o el Cubo Mágico.
Rubik lo patentó en 1975 y recién en 1977 se empezó a comercializar en Hungría y en 1980 se expandió al mundo entero. Su estreno internacional se hizo en distintas ferias del juguete, 
en Londres, París, Nuremberg y Nueva York, y eso sucedió en un plazo de dos meses, entre enero y febrero de 1980. A partir de allí, su evolución fue imparable. Rubik se transformó en multimillonario en forma casi instantánea, y hay mucha gente que sostiene que el Cubo Mágico es hoy el “best seller” de los juguetes de la historia contemporánea.
Si usted le dedica un rato a buscar en YouTube, es posible encontrar más de 46 mil videos con instrucciones y soluciones de distinto tipo, y el video que figura en la página web http://
www.youtube.com/watch?v=HsQIoPyfQzM ya tuvo más de ¡22 millones de visitas!De hecho, ya se ha generado una cuestión de culto, con seguidores incondicionales, seminarios en distintas partes del mundo y hasta una página oficial para todos los fanáticos: http://www.rubiks.com/
El Rubik’s Cube tiene, además, un lugar en el famoso Museo de Arte Moderno de Nueva York y fue aceptado por la Enciclopedia Inglesa de Oxford a los dos años de que se hubiera esparcido por el mundo.
El cubo
El cubo en sí mismo consiste de 27 “minicubos” con una distribución de 3 de alto por 3 de largo por 3 de ancho. En la práctica hay sólo 26 de estos pequeños “cubitos”, ya que el que debería ocupar el lugar del centro, el único que no tiene una cara exterior o que se pueda ver desde afuera sin desarmarlo, está reemplazado por el mecanismo que es el que le permite al Cubo Mágico pivotear y hacer todos los movimientos. Ése fue el gran logro de Rubik.
Los 26 cubitos no son todos iguales: hay ocho “cubos esquinas”, doce “cubos aristas” y los seis restantes, ocupan los lugares del centro de cada cara exterior y están i jos. Y acá empiezan 
algunos cálculos. Hay 40.320 maneras de permutar los cubos que están en las esquinas. Siete pueden ser orientados independientemente y el octavo depende de los otros siete. A su vez, cada uno de estos cubos puede rotarse en tres posiciones diferentes y producir un total de 37 (tres a la siete)= 2.187 posibles distribuciones. Hay, además, 239.500.800 formas de intercambiar las aristas . Y a esta conclusión quería llegar: el número total de posiciones a las que uno puede llegar rotando el cubo es de 43.252.003.274.489.856.000. Es decir, un poco más de 43 trillones, o lo que es lo mismo, el número 43 seguido de ¡18 ceros! Para tener una idea de lo enorme que es este número, piense que si usted pudiera probar un millón de configuraciones por segundo, tardaría casi un millón y medio de años para probarlas todas.  Son muchas. Continúa...

Por cierto, por si no conoces el resto de libros de Adrián Paenza, a continuación te dejo los enlaces:
¿Qué haces todavía aquí? ¡El libro del Dr. Adrián Paenza te espera!

miércoles, 9 de noviembre de 2011

¿CÓMO, ESTO TAMBIÉN ES MATEMÁTICA?

Ya podemos disfrutar de un nuevo libro de Adrián Paenza. Este ejemplar, publicado por Editorial Sudamericana, cuenta con el inconfundible toque del autor, y, como siempre,  lo puedes descargar gratuitamente

Antes del prólogo el autor afirma:
¡Todo es matemática! 
Máquinas tragamonedas, claves secretas, laberintos, 
puentes flexibles y moscas que vuelan rápido como trenes.

Si uno pregunta la solución de un problema, el conocimiento NO permanece. 
Es como si uno lo hubiera pedido prestado. 
En cambio, si lo piensa uno, es como haberlo adquirido para siempre.

A continuación... uno de los capítulos para que se te vaya abriendo el apetito:

No sé
Es curiosa la dificultad que tenemos los humanos para decir “no sé, no entiendo”.
Y es curioso también cómo se va modificando a lo largo de los años, porque los niños no tienen dificultades en preguntar “¿por qué el cielo es azul?” o “¿por qué mi hermanito tiene ‘pitito’ y 
yo no?” o “¿por qué gritaban ustedes dos ayer por la noche?” o “¿por qué el agua moja y el fuego quema y la electricidad ‘dapatadas’?”. Y siguen los porqué.
En todo caso, a lo que aspiro es que concuerde conmigo en que los niños no tienen dificultades ni coflictos en cuestionar todo. Y cuando digo “todo”, quiero decir “¡todo!”.
Pero a medida que el tiempo pasa empiezan los rubores, los temores y uno ya no se siente tan cómodo cuando se exhibe falible o ignorante. La cultura se va filtrando por todas partes y las 
reglas empiezan a encorsetar.
Uno se empieza a sentir incómodo cuando no entiende algo. 
Y la sociedad se ocupa de remarcarlo todo el tiempo: 
“¿Cómo?, ¿no entendés?”
“¿No sabías que era así?”
“¿Dónde estabas metido, en una burbuja?” 
“¡Es medio tonto, no entiende nada!”
O los más agraviantes aún:
“El ascensor no le llega hasta el último piso.”
“No es el cuchillo más ai lado del cajón.”
“Le faltan algunos jugadores.”
Los ejemplos abundan. En el colegio uno solamente hace las preguntas que se supone que puede hacer. Pero si uno tiene preguntas que no se corresponden ni con el tema, ni con la hora, ni con la materia ni son las esperables por el docente, entonces son derivadas o dejadas para otros momentos.
Es decir, ir a la escuela es imprescindible —obvio— pero claramente la escuela dejó de ser la única fuente de información (y la más consistente), como lo fue en un pasado no muy lejano. Y 
por eso creo que en algún momento habrá que re-pensarla. No dudo del valor INMENSO que tiene, pero requiere de adaptaciones rápidas a las nuevas realidades. Y no me refiero solamente a modificar los programas de estudio, sino a revisar las técnicas de educación que seguimos usando.
Durante muchos años, salvo a través de los padres, no había otra referencia más importante y fuente de conocimiento que ir al colegio. Sin embargo, las condiciones han cambiado mucho. 
Ahora, los medios electrónicos no están solamente reducidos a la radio y la televisión. Y no es que hoy los colegios sean prescindibles —todavía— , pero me refiero a la unicidad y posición de 
privilegio que tuvieron durante más de medio siglo.
Hoy ya no. Internet, correos electrónicos, mensajes de texto, Skype, Twitter, Facebook, teléfonos inteligentes, Blackberries, IPhones, IPods, IPads y demás han reemplazado y ocupado esos lugares de preponderancia, o por lo menos están en franca competencia.
Perdón la digresión, pero no pude evitarla. 
Sigo: todavía la sociedad, en forma implícita o explícita, condena el decir “no sé”. Siempre sostuve que la matemática que se enseña infunde miedo entre los jóvenes, especialmente en los colegios, aunque también sucede en las casas de esos mismos jóvenes por el problema que tuvieron/tienen los propios padres de esos chicos.
Pero el otro día, en una entrevista, me propusieron que pensara si lo mismo no pasa con Lengua o Historia. Y creo que no, que no es lo mismo. Me explico: ningún niño siente que es inferior si no entiende algo de Historia o de Lengua. Lo siente, sí, cuando se trata de Matemática. Allí no hay alternativa. Si uno entiende, es un “bocho” y tiene patente de inteligente, “nerd” o algo equivalente. Es más, a ese niño le están permitidas ciertas licencias 
que los otros no tienen. Y eso porque le va bien en matemática. 
Y son pocos. Digo, son pocos los niños a los cuales les va bien,  con todo lo que eso conlleva como carga por parte de los adultos.
“Le va bien.” ¿Suena raro, no? ¿Qué querrá decir que “le va  bien”? Ese niño, quizás, puede preguntar. Nadie lo va a considerar mal si cuestiona lo que pasa alrededor “porque le va bien en Matemática”. No es lo mismo que le vaya bien en Lengua o en Historia o en Geografía. Eso no, porque eso se aprende, se estudia, es cuestión de dedicarle tiempo. Con la matemática parece que eso no pasa. Es decir, la percepción generalizada que la sociedad tiene (al menos de acuerdo con mi experiencia) es que hay gente dotada y otra que no. Los dotados no necesitan mucho esfuerzo, entienden y listo. Y los otros, la gran mayoría, no importa cuánto tiempo le dediquen, o cuanto esfuerzo estén dispuestos a ofrecer, no hay caso. Algo así como que “lo que natura non da, Salamanca non presta”, con toda la brutalidad que esta frase implica Aquí, un breve paréntesis. El arte presenta también otro ángulo interesante. Si un niño tiene algunas condiciones que lo destacan en la pintura o en la música, por poner algunos ejemplos, entonces sí, ese niño está bien. Se lo acepta como “raro” (o “rara”) y puede hacer preguntas. Pero la media, la mayoría de los chicos, no. No está bien visto. Si uno pregunta, es porque no entiende o no sabe, y no queda bien exponerse como ignorante de algo. Parece como que generara vergüenza, propia y ajena.¿Por qué? ¿Por qué se supone que uno no puede preguntar? 
¿Por qué se supone que uno tiene que entender aunque uno no entienda? ¿Por qué está mal volver a preguntar algo que se supone que uno sabía pero que se olvidó? ¿Por qué? ¿Por qué no aceptar que vivimos constantemente sumergidos en una duda? 
¿Por qué no valorar la duda como motor del aprendizaje, del conocimiento?
En todo caso, pareciera que sólo aquellos que tienen la seguridad de que nada les va a pasar son los que pueden cuestionar sin sentirse minimizados o disminuidos ante los ojos del interlocutor.
Y aquí es donde conviene detenerse. Si se trata de conseguir seguridad, uno podría decir “¿seguridad de qué?”. Seguridad de que nadie lo va a considerar a uno un idiota, o un tonto. O están también aquellos a quienes no les importa tanto el qué dirán. 
Pero son los menos. La sociedad parece sólo valorar “el gran conocimiento”, la cultura enciclopedista. Algo así como la cultura de ser un gran diccionario o una enciclopedia que camina. Una sociedad que discute a la creatividad, a aquel que se sale del molde, a aquel que 
pregunta todo el tiempo, aquel que dice “no sé”, “no entiendo”. Yo creo que uno debería tratar de estimular la prueba y el error. O, mejor dicho, de estimular que el joven pruebe y pruebe que pregunte y pregunte, y que busque él/ella la vuelta para ver si le sale o si entiende lo que en apariencia le resulta inaccesible. 
Sobre todo invito a los adultos a que nos asociemos a la búsqueda con ellos, a mostrarnos tan falibles como ellos, sobre todo porque SOMOS tan falibles como ellos, y no estaría mal mostrarnos tan apasionados por entender como ellos, tan curiosos como ellos.
En definitiva, el saber es algo inasible, difícil de definir. Y perecedero, salvo que uno lo riegue todos los días. ¿Qué quiere decir saber algo? Una persona puede saber cuáles son todos los 
pasos para conducir un auto, pero eso no significa que sepa manejar. Un cirujano, no bien egresa de la facultad de medicina, puede creer que sabe lo que tiene que hacer. De allí a poder 
operar, hay un trecho largo. 
Por eso, el único camino es la pregunta, la duda y el reconocimiento constante del “no sé, no sé cómo se hace; no entiendo; explicámelo de nuevo”.
Y eso es lo que creo que nos falta como sociedad: seguir como cuando éramos niños, sin pruritos ni pudores. Era el momento en el que no saber era visto como una virtud, aceptado por los adultos por la ingenuidad que contenía y porque la película estaba virgen y estaba todo por entender. Quizás uno llegue a la conclusión de que en esencia conoce poco y de muy poquitas cosas, pero la maravilla de la vida pasa por el desafío de descubrir. Y de poder decir “no sé, no entiendo”.



Por cierto, por si no conoces el resto de libros de Adrián Paenza, a continuación te dejo los enlaces:
¿Qué haces todavía aquí? ¡El libro del Dr. Adrián Paenza te espera!