Guillermo Durán dirige el Grupo de Teoría de Grafos y Optimización de la Facultad de Ciencias Exactas de la UBA. Este matemático argentino tiene dos certezas que lo reconfortan. Una de ellas es que en la Argentina la formación de matemáticos alcanza “niveles de excelencia”; la otra, que en los últimos años la difusión ha contribuido a quitarle a la matemática su aura de inentendible para mostrarla como una actividad que hasta puede resultar entretenida. Hay una tercera convicción con la que, en cambio, no se siente cómodo, y es la de que todavía a la matemática le falta mostrar que puede mejorar la vida cotidiana de las personas y ser una herramienta útil para las organizaciones. “Con otros colegas investigadores estamos en una movida a nivel nacional para relanzar la matemática aplicada”, explica.
¿Por qué? Se ha hecho un muy buen trabajo en difusión. Están por ejemplo los libros de Adrián Paenza, de Pablo Amster, de Diego Golombek, y hay mucha gente que está trabajando en difusión y divulgación de la matemática. Quieren mostrar que no es aburrida, que se puede enseñar de manera divertida, que hay juegos con los que se puede aprender matemática y ayudar a pensar. Todo ese trabajo es valiosísimo, pero además tenemos que demostrar que la matemática puede resolver problemas de la vida cotidiana: de transporte, de recolección de la basura, de licitaciones del Estado. Argentina tiene muy buenos matemáticos, y casi todos ellos están orientados a temas teóricos. Nosotros queremos que los matemáticos tengan mayor presencia en el uso de aplicaciones de la matemática. Queremos mostrar que la matemática sirve para resolver problemas del mundo real, no sólo para el sudoku. Hay poca experiencia en la Argentina en resolver problemas del mundo real. El Estado, si utiliza herramientas matemáticas va a ser más eficiente, y la empresa privada también.
¿Por ejemplo? El año pasado con nuestro grupo hicimos la distribución de censistas para el Censo Nacional en la Provincia de Buenos Aires .
La Dirección de Estadística tenía que determinar los recorridos de cada censista. Es un problema grande: la provincia tiene 17.000 radios, y hay una serie de condiciones: un censista no puede cruzar vías, avenidas principales ni ríos, el recorrido no puede exceder los dos kilómetros ... Son 17.000 problemas que tienen características muy diferenciadas: no es lo mismo un radio en una zona rural que otro en Vicente López. Resolverlo manualmente era muy complicado. El algoritmo matemático a desarrollar tenía que ser lo suficientemente versátil para resolver todos los problemas.
¿Cuál fue el resultado? El desarrollo del algoritmo nos tomó unos tres meses, con un grupo de trabajo de cuatro personas; el programa resolvió en algunas horas de procesamiento el 95 por ciento de los casos; los restantes quedaron para hacerse a mano. El cálculo determinó además el número de censistas que se necesitaba en cada radio. Nos contactaron en abril y el censo era en octubre, no podíamos tomarnos un año. En el mundo real pasa eso: a veces hay un año para desarrollar una herramienta más eficiente, pero en general hay que hacerlo en el plazo más breve.
¿Trabajaron desde cero o se basaron en otras experiencias? Había muy poca experiencia sobre uso de aplicaciones matemáticas en censos. Nosotros modelamos matemáticamente dentro de las técnicas que conocemos; el modelo que aplicamos al censo, en términos de técnicas matemáticas, es similar al que aplicamos para hacer el fixture del campeonato de fútbol chileno.
¿En qué otras áreas desarrollaron aplicaciones? Hicimos un estudio para la Ciudad de Buenos Aires sobre la recolección de basura. Analizamos el recorrido de los camiones y demostramos que esos recorridos podían disminuirse entre un 20 y un 30 por ciento, lo que implica ahorro en combustible y un aumento de la vida útil de los camiones; la estimación fue un ahorro de doscientos mil dólares al año. Además hay cuestiones cualitativas, como la mejora del tránsito, el menor desgaste del conductor. No cobramos nada, la Ciudad nos dio los datos, hicimos el estudio y le entregamos la solución, pero no se implementó. Ahora estamos en tratativas con otra ciudad muy grande del país para aplicar lo que aprendimos.
Además del fixture del fútbol, ¿qué otras aplicaciones desarrolló el equipo que integra en Chile? El Estado licita todos los años la provisión de alimentos para los comedores escolares de todo el país. Hay muchos proveedores, muchas escuelas, muchas regiones, y la idea es inducir a los proveedores a ofertar los precios que el Estado espera y evitar que una sola empresa monopolice muchas regiones. El grupo en el que trabajo (del Departamento de Ingeniería Industrial de la Universidad de Chile) diseñó un algoritmo que determina año a año de manera transparente qué comedores se asignan a cada empresa. Esto, bien hecho, implica más y mejor comida para los chicos de todo Chile. Hay mucha literatura matemática sobre el problema de las subastas combinadas, que son complejas. Lo que queremos es destacar que todo esto es hecho desde la academia. Somos universitarios que, además de dar clases e investigar, trabajamos en problemas del mundo real. No somos una consultora, encaramos problemas que tengan un desafío de investigación detrás. Además, aunque no es el objetivo principal, se genera algún ingreso para la Universidad.
¿Realmente la matemática puede aplicarse para mejorar cualquier organización? Totalmente; hay pilas de literatura orientada a resolver problemas de salud, por ejemplo. Hay una cantidad de gente que necesita ser operada, una cantidad de cirujanos, una cantidad de quirófanos. Un tipo que se tiene que operar del corazón tiene una urgencia, otro al que van a operar de la rodilla puede esperar un par de semanas. Un algoritmo matemático puede resolver cuál es el mejor modo de asignar los quirófanos de acuerdo con las prioridades. Hoy no se usan estas técnicas en Argentina, pero se podría.
¿Podrían aplicarse modelos matemáticos, por ejemplo, para que en una elección la gente vote lo más cerca posible de su domicilio? Sin duda. Se podría poner un objetivo en función, por ejemplo, reducir la distancia máxima entre el domicilio y el lugar de votación. Es lo que llamamos un min max: minimizar el trayecto del que más viaja. O se puede poner otro objetivo, como minimizar la distancia para la mayoría de los votantes.
¿Hay algún país donde se empleen más matemáticos para resolver problemas concretos? ¿En qué áreas? En Chile, por ejemplo, trabajamos varios años con la industria salmonera en planificación de la producción, transporte y logística. También se hacen trabajos para la industria forestal y la minera. Estados Unidos tiene grupos de investigación en telefónicas y líneas aéreas. En Alemania hay un grupo fortísimo en Berlín que trabaja en transporte y otros problemas desde hace 30 años. Yo prefiero las aplicaciones para el Estado porque tienen un impacto más directo en la vida de la gente.
Fuera de las grandes organizaciones, ¿también hay aplicaciones posibles de la matemática en cada individuo? Sí. Los GPS para autos para calcular la mejor ruta emplean algoritmos similares a los que usamos en nuestra investigación para establecer los recorridos de los camiones de recolección de basura. También hay aplicaciones para organizaciones de tamaño intermedio. Es el caso del fixture chileno o el de la Liga Argentina de Vóley que hacemos desde 2007: juegan equipos de todo el país y hay que distribuir los partidos en el calendario para minimizar las distancias que recorren. El mismo esquema se usa en la NBA y en las ligas deportivas de EE.UU.
¿En la Argentina las empresas privadas y el Estado suelen emplear matemáticos? Hay muy poca inserción de los matemáticos en ambas áreas. Es una responsabilidad compartida. Desde fuera de la academia, porque nos miran con demasiado respeto y piensan “estos tipos están en la suya, demuestran teoremas inaccesibles y están muy lejos de nuestros problemas”. Y nosotros decimos “no nos entienden”. Es una brecha que es fundamental acortar. Hoy la Argentina tiene un Ministerio de Ciencia y un ministro, Lino Barañao, que es científico y ha hecho cosas para que el mundo científico se acerque hacia los problemas concretos. Hay subsidios estimulantes. Falta mucho, sin duda, pero empieza a haber lazos comunicantes. Pero nosotros todavía no les hemos mostrado a los funcionarios del Estado y a los gerentes de las empresas que nuestras técnicas sirven para resolver problemas. En la medida que lo hagamos y que el gerente se dé cuenta de que si contrata a un grupo de matemáticos para resolver un problema va a ahorrar un 20% de lo que gasta en determinada cosa, va a tomar más matemáticos al día siguiente.
¿Cuántos matemáticos trabajan hoy en Argentina en áreas de gestión estatal o empresas privadas? No tengo números, pero la proporción que está trabajando en el mundo productivo, sea en lugares estatales o privados, es muy baja. La mayoría se dedica a la vida académica. Es algo que tenemos que cambiar.
Copyright Clarín, 2011.
Señas particulares